Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 130(1): 69-79, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33151775

RESUMO

We examined the effect of intravenous ascorbate (VitC) administration on exercise-induced redox balance, inflammation, exertional dyspnea, neuromuscular fatigue, and exercise tolerance in patients with chronic obstructive pulmonary disease (COPD). Eight COPD patients completed constant-load cycling (∼80% of peak power output, 83 ± 10 W) to task failure after intravenous VitC (2 g) or saline (placebo, PL) infusion. All participants repeated the shorter of the two exercise trials (isotime) with the other infusate. Quadriceps fatigue was determined by pre- to postexercise changes in quadriceps twitch torque (ΔQtw, electrical femoral nerve stimulation). Corticospinal excitability before, during, and after exercise was assessed by changes in motor evoked potentials triggered by transcranial magnetic stimulation. VitC increased superoxide dismutase (marker for endogenous antioxidant capacity) by 129% and mitigated C-reactive protein (marker for inflammation) in the plasma during exercise but failed to alter the exercise-induced increase in lipid peroxidation (malondialdehyde) and free radicals [electron paramagnetic resonance (EPR)-spectroscopy]. Although VitC did, indeed, decrease neuromuscular fatigue (ΔQtw: PL -29 ± 5%, VitC -23 ± 6%, P < 0.05), there was no impact on corticospinal excitability and time to task failure (∼8 min, P = 0.8). Interestingly, in terms of pulmonary limitations to exercise, VitC had no effect on perceived exertional dyspnea (∼8.5/10) and its determinants, including oxygen saturation ([Formula: see text]) (∼92%) and respiratory muscle work (∼650 cmH2O·s·min-1) (P > 0.3). Thus, although VitC facilitated indicators for antioxidant capacity, diminished inflammatory markers, and improved neuromuscular fatigue resistance, it failed to improve exertional dyspnea and cycling exercise tolerance in patients with COPD. As dyspnea is recognized to limit exercise tolerance in COPD, the otherwise beneficial effects of VitC may have been impacted by this unaltered sensation.NEW & NOTEWORTHY We investigated the effect of intravenous vitamin C on redox balance, exertional dyspnea, neuromuscular fatigue, and exercise tolerance in chronic obstructive pulmonary disease (COPD) patients. Acute vitamin C administration increased superoxide dismutase (marker of antioxidant capacity) and attenuated fatigue development but failed to improve exertional dyspnea and exercise tolerance. These findings suggest that a compromised redox balance plays a critical role in the development of fatigue in COPD but also highlight the significance of exertional dyspnea as an important symptom limiting the patients' exercise tolerance.


Assuntos
Tolerância ao Exercício , Doença Pulmonar Obstrutiva Crônica , Ácido Ascórbico , Dispneia , Teste de Esforço , Humanos , Fadiga Muscular
2.
Am J Physiol Heart Circ Physiol ; 320(2): H668-H678, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33306447

RESUMO

Passive leg movement (PLM) evokes a robust and predominantly nitric oxide (NO)-mediated increase in blood flow that declines with age and disease. Consequently, PLM is becoming increasingly accepted as a sensitive assessment of endothelium-mediated vascular function. However, a substantial PLM-induced hyperemic response is still evoked despite nitric oxide synthase (NOS) inhibition. Therefore, in nine young healthy men (25 ± 4 yr), this investigation aimed to determine whether the combination of two potent endothelium-dependent vasodilators, specifically prostaglandin (PG) and endothelium-derived hyperpolarizing factor (EDHF), account for the remaining hyperemic response to the two variants of PLM, PLM (60 movements) and single PLM (sPLM, 1 movement), when NOS is inhibited. The leg blood flow (LBF, Doppler ultrasound) response to PLM and sPLM following the intra-arterial infusion of NG-monomethyl-l-arginine (l-NMMA), to inhibit NOS, was compared to the combined inhibition of NOS, cyclooxygenase (COX), and cytochrome P-450 (CYP450) by l-NMMA, ketorolac tromethamine (KET), and fluconazole (FLUC), respectively. NOS inhibition attenuated the overall LBF [area under the curve (LBFAUC)] response to both PLM (control: 456 ± 194, l-NMMA: 168 ± 127 mL, P < 0.01) and sPLM (control: 185 ± 171, l-NMMA: 62 ± 31 mL, P = 0.03). The combined inhibition of NOS, COX, and CYP450 (i.e., l-NMMA+KET+FLUC) did not further attenuate the hyperemic responses to PLM (LBFAUC: 271 ± 97 mL, P > 0.05) or sPLM (LBFAUC: 72 ± 45 mL, P > 0.05). Therefore, PG and EDHF do not collectively contribute to the non-NOS-derived NO-mediated, endothelium-dependent hyperemic response to either PLM or sPLM in healthy young men. These findings add to the mounting evidence and understanding of the vasodilatory pathways assessed by the PLM and sPLM vascular function tests.NEW & NOTEWORTHY Passive leg movement (PLM) evokes a highly nitric oxide (NO)-mediated hyperemic response and may provide a novel evaluation of vascular function. The contributions of endothelium-dependent vasodilatory pathways, beyond NO and including prostaglandins and endothelium-derived hyperpolarizing factor, to the PLM-induced hyperemic response to PLM have not been evaluated. With intra-arterial drug infusion, the combined inhibition of nitric oxide synthase (NOS), cyclooxygenase, and cytochrome P-450 (CYP450) pathways did not further diminish the hyperemic response to PLM compared with NOS inhibition alone.


Assuntos
Endotélio Vascular/fisiologia , Hiperemia , Movimento , Contração Muscular , Músculo Esquelético/irrigação sanguínea , Óxido Nítrico/metabolismo , Vasodilatação , Adulto , Fatores Biológicos/metabolismo , Velocidade do Fluxo Sanguíneo , Inibidores de Ciclo-Oxigenase/administração & dosagem , Inibidores das Enzimas do Citocromo P-450/administração & dosagem , Endotélio Vascular/metabolismo , Voluntários Saudáveis , Humanos , Infusões Intra-Arteriais , Perna (Membro) , Masculino , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Prostaglandinas/metabolismo , Fluxo Sanguíneo Regional , Transdução de Sinais , Fatores de Tempo , Adulto Jovem
3.
Nitric Oxide ; 104-105: 51-60, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979497

RESUMO

Nitric oxide synthase (NOS) inhibition with N(G)-monomethyl-l-arginine (L-NMMA) is often used to assess the role of NO in human cardiovascular function. However, the window of effect for L-NMMA on human vascular function is unknown, which is critical for designing and interpreting human-based studies. This study utilized the passive leg movement (PLM) assessment of vascular function, which is predominantly NO-mediated, in 7 young male subjects under control conditions, immediately following intra-arterial L-NMMA infusion (0.24 mg⋅dl-1⋅min-1), and at 45-60 and 90-105 min post L-NMMA infusion. The leg blood flow (LBF) and leg vascular conductance (LVC) responses to PLM, measured with Doppler ultrasound and expressed as the change from baseline to peak (ΔLBFpeak and ΔLVCpeak) and area under the curve (LBFAUC and LVCACU), were assessed. PLM-induced robust control ΔLBFpeak (1135 ± 324 ml⋅min-1) and ΔLVCpeak (10.7 ± 3.6 ml⋅min-1⋅mmHg-1) responses that were significantly attenuated (704 ± 196 ml⋅min-1 and 6.7 ± 2 ml⋅min-1⋅mmHg-1) immediately following L-NMMA infusion. Likewise, control condition PLM ΔLBFAUC (455 ± 202 ml) and ΔLVCAUC (4.0 ± 1.4 ml⋅mmHg-1) were significantly attenuated (141 ± 130 ml and 1.3 ± 1.2 ml⋅mmHg-1) immediately following L-NMMA infusion. However, by 45-60 min post L-NMMA infusion all PLM variables were not significantly different from control, and this was still the case at 90-105 min post L-NMMA infusion. These findings reveal that the potent reduction in NO bioavailability afforded by NOS inhibition with L-NMMA has a window of effect of less than 45-60 min in the human vasculature. These data are particularly important for the commonly employed approach of pharmacologically inhibiting NOS with L-NMMA in the human vasculature.


Assuntos
Inibidores Enzimáticos/farmacocinética , Óxido Nítrico Sintase/antagonistas & inibidores , ômega-N-Metilarginina/farmacocinética , Adulto , Artéria Femoral/fisiologia , Hemodinâmica/efeitos dos fármacos , Humanos , Perna (Membro)/irrigação sanguínea , Masculino , Óxido Nítrico/metabolismo , Fluxo Sanguíneo Regional/efeitos dos fármacos , Fatores de Tempo , Adulto Jovem
4.
J Physiol ; 598(1): 71-84, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31705661

RESUMO

KEY POINTS: Exercise in patients with hypertension can be accompanied by an abnormal cardiovascular response that includes attenuated blood flow and an augmented pressor response. Endothelin-1, a very potent vasoconstrictor, is a key modulator of blood flow and pressure during in health and has been implicated as a potential cause of the dysfunction in hypertension. We assessed the role of endothelin-1, acting through endothelin A (ETA ) receptors, in modulating the central and peripheral cardiovascular responses to exercise in patients with hypertension via local antagonism of these receptors during exercise. ETA receptor antagonism markedly increased leg blood flow, vascular conductance, oxygen delivery, and oxygen consumption during exercise; interestingly, these changes occurred in the presence of reduced leg perfusion pressure, indicating that these augmentations were driven by changes in vascular resistance. These data indicate that ETA receptor antagonism could be a viable therapeutic approach to improve blood flow during exercise in hypertension. ABSTRACT: Patients with hypertension can exhibit impaired muscle blood flow and exaggerated increases in blood pressure during exercise. While endothelin (ET)-1 plays a role in regulating blood flow and pressure during exercise in health, little is known about the role of ET-1 in the cardiovascular response to exercise in hypertension. Therefore, eight volunteers diagnosed with hypertension were studied during exercise with either saline or BQ-123 (ETA receptor antagonist) infusion following a 2-week withdrawal of anti-hypertensive medications. The common femoral artery and vein were catheterized for drug infusion, blood collection and blood pressure measurements, and leg blood flow was measured by Doppler ultrasound. Patients exercised at both absolute (0, 5, 10, 15 W) and relative (40, 60, 80% peak power) intensities. BQ-123 increased blood flow at rest (79 ± 87 ml/min; P = 0.03) and augmented the exercise-induced hyperaemia at most intensities (80% saline: Δ3818±1222 vs. BQ-123: Δ4812±1469 ml/min; P = 0.001). BQ-123 reduced leg MAP at rest (-8 ± 4 mmHg; P < 0.001) and lower intensities (0-10 W; P < 0.05). Systemic diastolic blood pressure was reduced (0 W, 40%; P < 0.05), but systemic MAP was defended by an increased cardiac output. The exercise pressor response (ΔMAP) did not differ between conditions (80% saline: 25 ± 10, BQ-123: 30 ± 7 mmHg; P = 0.17). Thus, ET-1, acting through the ETA receptors, contributes to the control of blood pressure at rest and lower intensity exercise in these patients. Furthermore, the finding that ET-1 constrains the blood flow response to exercise suggests that ETA receptor antagonism could be a therapeutic approach to improve blood flow during exercise in hypertension.


Assuntos
Exercício Físico , Hipertensão/fisiopatologia , Músculo Esquelético/irrigação sanguínea , Receptor de Endotelina A/fisiologia , Fluxo Sanguíneo Regional , Pressão Sanguínea , Antagonistas dos Receptores de Endotelina/farmacologia , Endotelina-1/fisiologia , Humanos , Peptídeos Cíclicos/farmacologia
5.
Am J Physiol Regul Integr Comp Physiol ; 316(5): R512-R524, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30789790

RESUMO

Patients suffering from heart failure with reduced ejection fraction (HFrEF) experience impaired limb blood flow during exercise, which may be due to a disease-related increase in α-adrenergic receptor vasoconstriction. Thus, in eight patients with HFrEF (63 ± 4 yr) and eight well-matched controls (63 ± 2 yr), we examined changes in leg blood flow (Doppler ultrasound) during intra-arterial infusion of phenylephrine (PE; an α1-adrenergic receptor agonist) and phentolamine (Phen; a nonspecific α-adrenergic receptor antagonist) at rest and during dynamic single-leg knee-extensor exercise (0, 5, and 10 W). At rest, the PE-induced reduction in blood flow was significantly attenuated in patients with HFrEF (-15 ± 7%) compared with controls (-36 ± 5%). During exercise, the controls exhibited a blunted reduction in blood flow induced by PE (-12 ± 4, -10 ± 4, and -9 ± 2% at 0, 5, and 10 W, respectively) compared with rest, while the PE-induced change in blood flow was unchanged compared with rest in the HFrEF group (-8 ± 5, -10 ± 3, and -14 ± 3%, respectively). Phen administration increased leg blood flow to a greater extent in the HFrEF group at rest (+178 ± 34% vs. +114 ± 28%, HFrEF vs. control) and during exercise (36 ± 6, 37 ± 7, and 39 ± 6% vs. 13 ± 3, 14 ± 1, and 8 ± 3% at 0, 5, and 10 W, respectively, in HFrEF vs. control). Together, these findings imply that a HFrEF-related increase in α-adrenergic vasoconstriction restrains exercising skeletal muscle blood flow, potentially contributing to diminished exercise capacity in this population.


Assuntos
Artérias/inervação , Tolerância ao Exercício , Insuficiência Cardíaca/fisiopatologia , Músculo Esquelético/irrigação sanguínea , Receptores Adrenérgicos beta 1/metabolismo , Volume Sistólico , Sistema Nervoso Simpático/fisiopatologia , Vasoconstrição , Função Ventricular Esquerda , Antagonistas Adrenérgicos/administração & dosagem , Idoso , Velocidade do Fluxo Sanguíneo , Estudos de Casos e Controles , Tolerância ao Exercício/efeitos dos fármacos , Feminino , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/metabolismo , Humanos , Extremidade Inferior , Masculino , Pessoa de Meia-Idade , Contração Muscular , Fluxo Sanguíneo Regional , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Fatores de Tempo , Vasoconstrição/efeitos dos fármacos , Vasodilatação
6.
Am J Physiol Regul Integr Comp Physiol ; 315(4): R741-R750, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29995457

RESUMO

To examine the impact of aging on neuromuscular fatigue following cycling (CYC; large active muscle mass) and single-leg knee-extension (KE; small active muscle mass) exercise, 8 young (25 ± 4 years) and older (72 ± 6 years) participants performed CYC and KE to task failure at a given relative intensity (80% of peak power output). The young also matched CYC and KE workload and duration of the old (iso-work comparison). Peripheral and central fatigue were quantified via pre-/postexercise decreases in quadriceps twitch torque (∆Qtw, electrical femoral nerve stimulation) and voluntary activation (∆VA). Although young performed 77% and 33% more work during CYC and KE, respectively, time to task failure in both modalities was similar to the old (~9.5 min; P > 0.2). The resulting ΔQtw was also similar between groups (CYC ~40%, KE ~55%; P > 0.3); however, ∆VA was, in both modalities, approximately double in the young (CYC ~6%, KE ~9%; P < 0.05). While causing substantial peripheral and central fatigue in both exercise modalities in the old, ∆Qtw in the iso-work comparison was not significant (CYC; P = 0.2), or ~50% lower (KE; P < 0.05) in the young, with no central fatigue in either modality ( P > 0.4). Based on iso-work comparisons, healthy aging impairs fatigue resistance during aerobic exercise. Furthermore, comparisons of fatigue following exercise at a given relative intensity mask the age-related difference observed following exercise performed at the same workload. Finally, although active muscle mass has little influence on the age-related difference in the rate of fatigue at a given relative intensity, it substantially impacts the comparison during exercise at a given absolute intensity.


Assuntos
Exercício Físico , Nervo Femoral/fisiologia , Contração Muscular , Fadiga Muscular , Força Muscular , Tratos Piramidais/fisiologia , Músculo Quadríceps/inervação , Adulto , Fatores Etários , Idoso , Ciclismo , Estimulação Elétrica/métodos , Eletromiografia , Potencial Evocado Motor , Humanos , Masculino , Tempo de Reação , Fatores de Tempo , Torque , Estimulação Magnética Transcraniana , Adulto Jovem
7.
J Physiol ; 596(8): 1373-1384, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29388218

RESUMO

KEY POINTS: We investigated the contribution of group III/IV muscle afferents to carotid baroreflex resetting during electrically evoked (no central command) and voluntary (requiring central command) isometric knee extension exercise. Lumbar intrathecal fentanyl was used to attenuate the central projection of µ-opioid receptor-sensitive group III/IV leg muscle afferent feedback. Spontaneous carotid baroreflex control was assessed by loading and unloading the carotid baroreceptors with a variable pressure neck chamber. Group III/IV muscle afferents did not influence spontaneous carotid baroreflex responsiveness at rest or during exercise. Afferent feedback accounted for at least 50% of the exercise-induced increase in the carotid baroreflex blood pressure and heart rate operating points, adjustments that are critical for an appropriate cardiovascular response to exercise. These findings suggest that group III/IV muscle afferent feedback is, independent of central command, critical for the resetting of the carotid baroreflex blood pressure and heart rate operating points, but not for spontaneous baroreflex responsiveness. ABSTRACT: This study sought to comprehensively investigate the role of metabolically and mechanically sensitive group III/IV muscle afferents in carotid baroreflex responsiveness and resetting during both electrically evoked (EVO, no central command) and voluntary (VOL, requiring central command) isometric single-leg knee-extension (15% of maximal voluntary contraction; MVC) exercise. Participants (n = 8) were studied under control conditions (CTRL) and following lumbar intrathecal fentanyl injection (FENT) to inhibit µ-opioid receptor-sensitive lower limb muscle afferents. Spontaneous carotid baroreflex control of mean arterial pressure (MAP) and heart rate (HR) were assessed following rapid 5 s pulses of neck pressure (NP, +40 mmHg) or suction (NS, -60 mmHg). Resting MAP (87 ± 10 mmHg) and HR (70 ± 8 bpm) were similar between CTRL and FENT conditions (P > 0.4). In terms of spontaneous carotid baroreflex responsiveness, FENT did not alter the change in MAP or HR responses to NP (+13 ± 5 mmHg, P = 0.85; +9 ± 3 bpm; P = 0.99) or NS (-13 ± 5 mmHg, P = 0.99; -24 ± 11 bpm; P = 0.49) at rest or during either exercise protocol, which were of a remarkably similar magnitude to rest. In contrast, FENT administration reduced the exercise-induced resetting of the operating point for MAP and HR during both EVO (116 ± 10 mmHg to 100 ± 15 mmHg and 93 ± 14 bpm to 82 ± 10 bpm) and VOL (107 ± 13 mmHg to 100 ± 17 mmHg and 89 ± 10 bpm to 72 ± 10 bpm) exercise bouts. Together, these findings document that group III/IV muscle afferent feedback is critical for the resetting of the carotid baroreflex MAP and HR operating points, independent of exercise-induced changes in central command, but not for spontaneous carotid baroreflex responsiveness.


Assuntos
Barorreflexo , Pressão Sanguínea , Corpo Carotídeo/fisiologia , Exercício Físico , Frequência Cardíaca , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Adulto , Humanos , Masculino , Músculo Esquelético/inervação
8.
J Appl Physiol (1985) ; 124(4): 1045-1053, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357496

RESUMO

Patients with chronic obstructive pulmonary disease (COPD) exhibit an altered skeletal muscle mitochondrial phenotype, which often includes reduced mitochondrial density, altered respiratory function, and elevated oxidative stress. As this phenotype may be explained by the sedentary lifestyle that commonly accompanies this disease, the aim of this study was to determine whether such alterations are still evident when patients with COPD are compared to control subjects matched for objectively measured physical activity (PA; accelerometry). Indexes of mitochondrial density [citrate synthase (CS) activity], respiratory function (respirometry in permeabilized fibers), and muscle oxidative stress [4-hydroxynonenal (4-HNE) content] were assessed in muscle fibers biopsied from the vastus lateralis of nine patients with COPD and nine PA-matched control subjects (CON). Despite performing similar levels of PA (CON: 18 ± 3, COPD: 20 ± 7 daily minutes moderate-to-vigorous PA; CON: 4,596 ± 683, COPD: 4,219 ± 763 steps per day, P > 0.70), patients with COPD still exhibited several alterations in their mitochondrial phenotype, including attenuated skeletal muscle mitochondrial density (CS activity; CON 70.6 ± 3.8, COPD 52.7 ± 6.5 U/mg, P < 0.05), altered mitochondrial respiration [e.g., ratio of complex I-driven state 3 to complex II-driven state 3 (CI/CII); CON: 1.20 ± 0.11, COPD: 0.90 ± 0.05, P < 0.05), and oxidative stress (4-HNE; CON: 1.35 ± 0.19, COPD: 2.26 ± 0.25 relative to ß-actin, P < 0.05). Furthermore, CS activity ( r = 0.55), CI/CII ( r = 0.60), and 4-HNE ( r = 0.49) were all correlated with pulmonary function, assessed as forced expiratory volume in 1 s ( P < 0.05), but not PA ( P > 0.05). In conclusion, the altered mitochondrial phenotype in COPD is present even in the absence of differing levels of PA and appears to be related to the disease itself. NEW & NOTEWORTHY Chronic obstructive pulmonary disease (COPD) is associated with debilitating alterations in the function of skeletal muscle mitochondria. By comparing the mitochondrial phenotype of patients with COPD to that of healthy control subjects who perform the same amount of physical activity each day, this study provides evidence that many aspects of the dysfunctional mitochondrial phenotype observed in COPD are not merely due to reduced physical activity but are likely related to the disease itself.


Assuntos
Mitocôndrias Musculares/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Idoso , Estudos de Casos e Controles , Respiração Celular , Exercício Físico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo
9.
J Appl Physiol (1985) ; 123(6): 1468-1476, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28860173

RESUMO

Broxterman RM, Trinity JD, Gifford JR, Kwon OS, Kithas AC, Hydren JR, Nelson AD, Morgan DE, Jessop JE, Bledsoe AD, Richardson RS. Single passive leg movement assessment of vascular function: contribution of nitric oxide. J Appl Physiol 123: 1468-1476, 2017. First published August 31, 2017; doi:10.1152/japplphysiol.00533.2017.-The assessment of passive leg movement (PLM)-induced leg blood flow (LBF) and vascular conductance (LVC) is a novel approach to assess vascular function that has recently been simplified to only a single PLM (sPLM), thereby increasing the clinical utility of this technique. As the physiological mechanisms mediating the robust increase in LBF and LVC with sPLM are unknown, we tested the hypothesis that nitric oxide (NO) is a major contributor to the sPLM-induced LBF and LVC response. In nine healthy men, sPLM was performed with and without NO synthase inhibition by intra-arterial infusion of NG-monomethyl-l-arginine (l-NMMA). Doppler ultrasound and femoral arterial pressure were used to determine LBF and LVC, which were characterized by the peak change (ΔLBFpeak and ΔLVCpeak) and area under the curve (LBFAUC and LVCAUC). l-NMMA significantly attenuated ΔLBFpeak [492 ± 153 (l-NMMA) vs. 719 ± 238 (control) ml/min], LBFAUC [57 ± 34 (l NMMA) vs. 147 ± 63 (control) ml], ΔLVCpeak [4.7 ± 1.1 (l-NMMA) vs. 8.0 ± 3.0 (control) ml·min-1·mmHg-1], and LVCAUC [0.5 ± 0.3 (l-NMMA) vs. 1.6 ± 0.9 (control) ml/mmHg]. The magnitude of the NO contribution to LBF and LVC was significantly correlated with the magnitude of the control responses ( r = 0.94 for ΔLBFpeak, r = 0.85 for LBFAUC, r = 0.94 for ΔLVCpeak, and r = 0.95 for LVCAUC). These data establish that the sPLM-induced hyperemic and vasodilatory response is predominantly (~65%) NO-mediated. As such, sPLM appears to be a promising, simple, in vivo assessment of NO-mediated vascular function and NO bioavailability. NEW & NOTEWORTHY Passive leg movement (PLM), a novel assessment of vascular function, has been simplified to a single PLM (sPLM), thereby increasing the clinical utility of this technique. However, the role of nitric oxide (NO) in mediating the robust sPLM hemodynamic responses is unknown. This study revealed that sPLM induces a hyperemic and vasodilatory response that is predominantly NO-mediated and, as such, appears to be a promising simple, in vivo, clinical assessment of NO-mediated vascular function and, therefore, NO bioavailability.


Assuntos
Movimento , Óxido Nítrico/fisiologia , Fluxo Sanguíneo Regional , Vasodilatação , Adulto , Pressão Arterial , Inibidores Enzimáticos/farmacologia , Hemodinâmica , Humanos , Hiperemia , Perna (Membro)/irrigação sanguínea , Masculino , Adulto Jovem , ômega-N-Metilarginina/farmacologia
11.
Int J Cardiol ; 211: 14-21, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26970959

RESUMO

BACKGROUND: Exercise intolerance is a hallmark symptom of heart failure patients with preserved ejection fraction (HFpEF), which may be related to an impaired ability to appropriately increase blood flow to the exercising muscle. METHODS: We evaluated leg blood flow (LBF, ultrasound Doppler), heart rate (HR), stroke volume (SV), cardiac output (CO), and mean arterial blood pressure (MAP, photoplethysmography) during dynamic, single leg knee-extensor (KE) exercise in HFpEF patients (n=21; 68 ± 2 yrs) and healthy controls (n=20; 71 ± 2 yrs). RESULTS: HFpEF patients exhibited a marked attrition during KE exercise, with only 60% able to complete the exercise protocol. In participants who completed all exercise intensities (0-5-10-15 W; HFpEF, n=13; Controls, n=16), LBF was not different at 0 W and 5 W, but was 15-25% lower in HFpEF compared to controls at 10 W and 15 W (P<0.001). Likewise, leg vascular conductance (LVC), an index of vasodilation, was not different at 0 W and 5 W, but was 15-20% lower in HFpEF compared to controls at 10 W and 15 W (P<0.05). In contrast to these peripheral deficits, exercise-induced changes in central variables (HR, SV, CO), as well as MAP, were similar between groups. CONCLUSIONS: These data reveal a marked reduction in LBF and LVC in HFpEF patients during exercise that cannot be attributed to a disease-related alteration in central hemodynamics, suggesting that impaired vasodilation in the exercising skeletal muscle vasculature may play a key role in the exercise intolerance associated with this patient population.


Assuntos
Teste de Esforço/métodos , Exercício Físico/fisiologia , Insuficiência Cardíaca/fisiopatologia , Músculo Esquelético/fisiopatologia , Volume Sistólico/fisiologia , Vasodilatação/fisiologia , Idoso , Velocidade do Fluxo Sanguíneo/fisiologia , Feminino , Insuficiência Cardíaca/diagnóstico por imagem , Humanos , Masculino , Ultrassonografia Doppler
12.
J Appl Physiol (1985) ; 120(9): 991-9, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26869709

RESUMO

Post-cuff occlusion flow-mediated dilation (FMD) is a proposed indicator of nitric oxide (NO) bioavailability and vascular function. FMD is reduced in patients with sepsis and may be a marker of end organ damage and mortality. However, FMD likely does not solely reflect NO-mediated vasodilation, is technically challenging, and often demonstrates poor reproducibility. In contrast, passive leg movement (PLM), a novel methodology to assess vascular function, yields a hyperemic response that is predominately NO-dependent, reproducible, and easily measured. This study evaluated PLM as an approach to assess NO-mediated vascular function in patients with sepsis. We hypothesized that PLM-induced hyperemia, quantified by the increase in leg blood flow (LBF), would be attenuated in sepsis. In a cross-sectional study, 17 subjects in severe sepsis or septic shock were compared with 16 matched healthy controls. Doppler ultrasound was used to assess brachial artery FMD and the hyperemic response to PLM in the femoral artery. FMD was attenuated in septic compared with control subjects (1.1 ± 1.7% vs. 6.8 ± 1.3%; values are means ± SD). In terms of PLM, baseline LBF (196 ± 33 ml/min vs. 328 ± 20 ml/min), peak change in LBF from baseline (133 ± 28 ml/min vs. 483 ± 86 ml/min), and the LBF area under the curve (16 ± 8.3 vs. 143 ± 33) were all significantly attenuated in septic subjects. Vascular function, as assessed by both FMD and PLM, is attenuated in septic subjects compared with controls. These data support the concept that NO bioavailability is attenuated in septic subjects, and PLM appears to be a novel and feasible approach to assess NO-mediated vascular function in sepsis.


Assuntos
Perna (Membro)/fisiologia , Movimento/fisiologia , Óxido Nítrico/metabolismo , Sepse/metabolismo , Sepse/fisiopatologia , Artéria Braquial/metabolismo , Artéria Braquial/fisiopatologia , Estudos de Casos e Controles , Estudos Transversais , Feminino , Artéria Femoral/metabolismo , Artéria Femoral/fisiopatologia , Humanos , Hiperemia/metabolismo , Hiperemia/fisiopatologia , Masculino , Pessoa de Meia-Idade , Fluxo Sanguíneo Regional/fisiologia , Reprodutibilidade dos Testes , Vasodilatação/fisiologia
13.
Heart ; 102(4): 278-84, 2016 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26567228

RESUMO

OBJECTIVE: While vascular dysfunction is well defined in patients with heart failure (HF) with reduced ejection fraction (HFrEF), disease-related alterations in the peripheral vasculature of patients with HF with preserved ejection fraction (HFpEF) are not well characterised. Thus, we sought to test the hypothesis that patients with HFpEF would demonstrate reduced vascular function, at the conduit artery and microvascular levels, compared with controls. METHODS: We examined conduit artery function via brachial artery flow-mediated dilation (FMD) and microvascular function via reactive hyperaemia (RH) following 5 min of ischaemia in 24 patients with Class II-IV HFpEF and 24 healthy controls matched for age, sex and brachial artery diameter. RESULTS: FMD was reduced in patients with HFpEF compared with controls (HFpEF: 3.1±0.7%; CONTROLS: 5.1±0.5%, p=0.03). However, shear rate at time of peak brachial artery dilation was lower in patients with HFpEF compared with controls (HFpEF: 42 070±4018/s; CONTROLS: 69 018±9509/s, p=0.01), and when brachial artery FMD was normalised for the shear stimulus, cumulative area-under-the-curve (AUC) at peak dilation, the between-group differences were eliminated (HFpEF: 0.11±0.03%/AUC; CONTROLS: 0.09±0.01%/AUC, p=0.58). RH, assessed as AUC, was lower in patients with HFpEF (HFpEF: 454±35 mL; CONTROLS: 660±63 mL, p<0.01). CONCLUSIONS: Collectively, these data suggest that maladaptations at the microvascular level contribute to the pathophysiology of HFpEF, while conduit artery vascular function is not diminished beyond that which occurs with healthy aging.


Assuntos
Artéria Braquial/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Microcirculação , Volume Sistólico , Vasodilatação , Função Ventricular Esquerda , Idoso , Velocidade do Fluxo Sanguíneo , Estudos de Casos e Controles , Feminino , Insuficiência Cardíaca/diagnóstico , Humanos , Hiperemia/fisiopatologia , Masculino , Fluxo Sanguíneo Regional , Ultrassonografia Doppler , Teste de Caminhada
14.
J Physiol ; 594(6): 1741-51, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26614395

RESUMO

The concept of symmorphosis postulates a matching of structural capacity to functional demand within a defined physiological system, regardless of endurance exercise training status. Whether this concept applies to oxygen (O2 ) supply and demand during maximal skeletal muscle O2 consumption (V̇O2 max ) in humans is unclear. Therefore, in vitro skeletal muscle mitochondrial V̇O2 max (Mito V̇O2 max , mitochondrial respiration of fibres biopsied from vastus lateralis) was compared with in vivo skeletal muscle V̇O2 max during single leg knee extensor exercise (KE V̇O2 max , direct Fick by femoral arterial and venous blood samples and Doppler ultrasound blood flow measurements) and whole-body V̇O2 max during cycling (Body V̇O2 max , indirect calorimetry) in 10 endurance exercise-trained and 10 untrained young males. In untrained subjects, during KE exercise, maximal O2 supply (KE Q̇O2max ) exceeded (462 ± 37 ml kg(-1) min(-1) , P < 0.05) and KE V̇O2 max matched (340 ± 22 ml kg(-1) min(-1) , P > 0.05) Mito V̇O2 max (364 ± 16 ml kg(-1) min(-1) ). Conversely, in trained subjects, both KE Q̇O2max (557 ± 35 ml kg(-1) min(-1) ) and KE V̇O2 max (458 ± 24 ml kg(-1) min(-1) ) fell far short of Mito V̇O2 max (743 ± 35 ml kg(-1) min(-1) , P < 0.05). Although Mito V̇O2 max was related to KE V̇O2 max (r = 0.69, P < 0.05) and Body V̇O2 max (r = 0.91, P < 0.05) in untrained subjects, these variables were entirely unrelated in trained subjects. Therefore, in untrained subjects, V̇O2 max is limited by mitochondrial O2 demand, with evidence of adequate O2 supply, whereas, in trained subjects, an exercise training-induced mitochondrial reserve results in skeletal muscle V̇O2 max being markedly limited by O2 supply. Taken together, these in vivo and in vitro measures reveal clearly differing limitations and excesses at V̇O2 max in untrained and trained humans and challenge the concept of symmorphosis as it applies to O2 supply and demand in humans.


Assuntos
Exercício Físico , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Estudos de Casos e Controles , Humanos , Masculino , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...